Extensions 1→N→G→Q→1 with N=C6 and Q=C2xC62

Direct product G=NxQ with N=C6 and Q=C2xC62
dρLabelID
C2xC63432C2xC6^3432,775

Semidirect products G=N:Q with N=C6 and Q=C2xC62
extensionφ:Q→Aut NdρLabelID
C6:(C2xC62) = S3xC2xC62φ: C2xC62/C62C2 ⊆ Aut C6144C6:(C2xC6^2)432,772

Non-split extensions G=N.Q with N=C6 and Q=C2xC62
extensionφ:Q→Aut NdρLabelID
C6.1(C2xC62) = C3xC6xDic6φ: C2xC62/C62C2 ⊆ Aut C6144C6.1(C2xC6^2)432,700
C6.2(C2xC62) = S3xC6xC12φ: C2xC62/C62C2 ⊆ Aut C6144C6.2(C2xC6^2)432,701
C6.3(C2xC62) = C3xC6xD12φ: C2xC62/C62C2 ⊆ Aut C6144C6.3(C2xC6^2)432,702
C6.4(C2xC62) = C32xC4oD12φ: C2xC62/C62C2 ⊆ Aut C672C6.4(C2xC6^2)432,703
C6.5(C2xC62) = S3xD4xC32φ: C2xC62/C62C2 ⊆ Aut C672C6.5(C2xC6^2)432,704
C6.6(C2xC62) = C32xD4:2S3φ: C2xC62/C62C2 ⊆ Aut C672C6.6(C2xC6^2)432,705
C6.7(C2xC62) = S3xQ8xC32φ: C2xC62/C62C2 ⊆ Aut C6144C6.7(C2xC6^2)432,706
C6.8(C2xC62) = C32xQ8:3S3φ: C2xC62/C62C2 ⊆ Aut C6144C6.8(C2xC6^2)432,707
C6.9(C2xC62) = Dic3xC62φ: C2xC62/C62C2 ⊆ Aut C6144C6.9(C2xC6^2)432,708
C6.10(C2xC62) = C3xC6xC3:D4φ: C2xC62/C62C2 ⊆ Aut C672C6.10(C2xC6^2)432,709
C6.11(C2xC62) = C22xC4xHe3central extension (φ=1)144C6.11(C2xC6^2)432,401
C6.12(C2xC62) = C22xC4x3- 1+2central extension (φ=1)144C6.12(C2xC6^2)432,402
C6.13(C2xC62) = D4xC3xC18central extension (φ=1)216C6.13(C2xC6^2)432,403
C6.14(C2xC62) = Q8xC3xC18central extension (φ=1)432C6.14(C2xC6^2)432,406
C6.15(C2xC62) = C4oD4xC3xC9central extension (φ=1)216C6.15(C2xC6^2)432,409
C6.16(C2xC62) = C24xHe3central extension (φ=1)144C6.16(C2xC6^2)432,563
C6.17(C2xC62) = C24x3- 1+2central extension (φ=1)144C6.17(C2xC6^2)432,564
C6.18(C2xC62) = D4xC32xC6central extension (φ=1)216C6.18(C2xC6^2)432,731
C6.19(C2xC62) = Q8xC32xC6central extension (φ=1)432C6.19(C2xC6^2)432,732
C6.20(C2xC62) = C4oD4xC33central extension (φ=1)216C6.20(C2xC6^2)432,733
C6.21(C2xC62) = C2xD4xHe3central stem extension (φ=1)72C6.21(C2xC6^2)432,404
C6.22(C2xC62) = C2xD4x3- 1+2central stem extension (φ=1)72C6.22(C2xC6^2)432,405
C6.23(C2xC62) = C2xQ8xHe3central stem extension (φ=1)144C6.23(C2xC6^2)432,407
C6.24(C2xC62) = C2xQ8x3- 1+2central stem extension (φ=1)144C6.24(C2xC6^2)432,408
C6.25(C2xC62) = C4oD4xHe3central stem extension (φ=1)726C6.25(C2xC6^2)432,410
C6.26(C2xC62) = C4oD4x3- 1+2central stem extension (φ=1)726C6.26(C2xC6^2)432,411

׿
x
:
Z
F
o
wr
Q
<