extension | φ:Q→Aut N | d | ρ | Label | ID |
C6.1(C2xC62) = C3xC6xDic6 | φ: C2xC62/C62 → C2 ⊆ Aut C6 | 144 | | C6.1(C2xC6^2) | 432,700 |
C6.2(C2xC62) = S3xC6xC12 | φ: C2xC62/C62 → C2 ⊆ Aut C6 | 144 | | C6.2(C2xC6^2) | 432,701 |
C6.3(C2xC62) = C3xC6xD12 | φ: C2xC62/C62 → C2 ⊆ Aut C6 | 144 | | C6.3(C2xC6^2) | 432,702 |
C6.4(C2xC62) = C32xC4oD12 | φ: C2xC62/C62 → C2 ⊆ Aut C6 | 72 | | C6.4(C2xC6^2) | 432,703 |
C6.5(C2xC62) = S3xD4xC32 | φ: C2xC62/C62 → C2 ⊆ Aut C6 | 72 | | C6.5(C2xC6^2) | 432,704 |
C6.6(C2xC62) = C32xD4:2S3 | φ: C2xC62/C62 → C2 ⊆ Aut C6 | 72 | | C6.6(C2xC6^2) | 432,705 |
C6.7(C2xC62) = S3xQ8xC32 | φ: C2xC62/C62 → C2 ⊆ Aut C6 | 144 | | C6.7(C2xC6^2) | 432,706 |
C6.8(C2xC62) = C32xQ8:3S3 | φ: C2xC62/C62 → C2 ⊆ Aut C6 | 144 | | C6.8(C2xC6^2) | 432,707 |
C6.9(C2xC62) = Dic3xC62 | φ: C2xC62/C62 → C2 ⊆ Aut C6 | 144 | | C6.9(C2xC6^2) | 432,708 |
C6.10(C2xC62) = C3xC6xC3:D4 | φ: C2xC62/C62 → C2 ⊆ Aut C6 | 72 | | C6.10(C2xC6^2) | 432,709 |
C6.11(C2xC62) = C22xC4xHe3 | central extension (φ=1) | 144 | | C6.11(C2xC6^2) | 432,401 |
C6.12(C2xC62) = C22xC4x3- 1+2 | central extension (φ=1) | 144 | | C6.12(C2xC6^2) | 432,402 |
C6.13(C2xC62) = D4xC3xC18 | central extension (φ=1) | 216 | | C6.13(C2xC6^2) | 432,403 |
C6.14(C2xC62) = Q8xC3xC18 | central extension (φ=1) | 432 | | C6.14(C2xC6^2) | 432,406 |
C6.15(C2xC62) = C4oD4xC3xC9 | central extension (φ=1) | 216 | | C6.15(C2xC6^2) | 432,409 |
C6.16(C2xC62) = C24xHe3 | central extension (φ=1) | 144 | | C6.16(C2xC6^2) | 432,563 |
C6.17(C2xC62) = C24x3- 1+2 | central extension (φ=1) | 144 | | C6.17(C2xC6^2) | 432,564 |
C6.18(C2xC62) = D4xC32xC6 | central extension (φ=1) | 216 | | C6.18(C2xC6^2) | 432,731 |
C6.19(C2xC62) = Q8xC32xC6 | central extension (φ=1) | 432 | | C6.19(C2xC6^2) | 432,732 |
C6.20(C2xC62) = C4oD4xC33 | central extension (φ=1) | 216 | | C6.20(C2xC6^2) | 432,733 |
C6.21(C2xC62) = C2xD4xHe3 | central stem extension (φ=1) | 72 | | C6.21(C2xC6^2) | 432,404 |
C6.22(C2xC62) = C2xD4x3- 1+2 | central stem extension (φ=1) | 72 | | C6.22(C2xC6^2) | 432,405 |
C6.23(C2xC62) = C2xQ8xHe3 | central stem extension (φ=1) | 144 | | C6.23(C2xC6^2) | 432,407 |
C6.24(C2xC62) = C2xQ8x3- 1+2 | central stem extension (φ=1) | 144 | | C6.24(C2xC6^2) | 432,408 |
C6.25(C2xC62) = C4oD4xHe3 | central stem extension (φ=1) | 72 | 6 | C6.25(C2xC6^2) | 432,410 |
C6.26(C2xC62) = C4oD4x3- 1+2 | central stem extension (φ=1) | 72 | 6 | C6.26(C2xC6^2) | 432,411 |